Homogenization, Linearization, and Large‐Scale Regularity for Nonlinear Elliptic Equations
نویسندگان
چکیده
منابع مشابه
Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Regularity Results for Very Degenerate Elliptic Equations
We consider a family of elliptic equations introduced in the context of traffic congestion. They have the form ∇·(∇F(∇u)) = f , where F is a convex function which vanishes inside some convex set and is elliptic outside. Under some natural assumptions on F and f , we prove that the function ∇F(∇u) is continuous in any dimension, extending a previous result valid only in dimension 2 [14]. Résumé....
متن کاملPeriodic Homogenization for Nonlinear Integro-Differential Equations
In this note, we prove the periodic homogenization for a family of nonlinear nonlocal “elliptic” equations with oscillatory coefficients. Such equations include, but are not limited to Bellman equations for the control of pure jump processes and the Isaacs equations for differential games of pure jump processes. The existence of an effective equation and convergence the solutions of the family ...
متن کاملComparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations
We establish interior Lipschitz regularity for continuous viscosity solutions of fully nonlinear, conformally invariant, degenerate elliptic equations. As a by-product of our method, we also prove a weak form of the strong comparison principle, which we refer to as the principle of propagation of touching points, for operators of the form ∇2ψ + L(x, ψ,∇ψ) which are non-decreasing in ψ.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2020
ISSN: 0010-3640,1097-0312
DOI: 10.1002/cpa.21902